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Abstract— In this work, an object tracking method on capac-
itive proximity sensor is presented. Arranged as a vector and
installed in the sidewalls of a work table with a robot, these
sensors are able to detect proximity events in the near field
of the workspace, including human approaching the table or
interacting with the robot. Considering the low spatial resolu-
tion of the sensors, a preprocessing method was implemented
and the data for tracking was prepared. The tracking method
is based on a Kalman-Filter, where the data association and
occlusion problem are discussed. The Methods implemented in
MATLAB show that the performance of this proposed tracking
using capacitive proximity sensor array for safe human-robot
interaction.

I. INTRODUCTION

Safe HRI imply that the robot system is able to interact
with the environment and thus guarantee safety in every
moment, when humans and robot are sharing the same
workspace [1]. For the perception of the environment, many
sensors are required, such as camera, laser, etc. However,
the traditional camera-based or laser-based solutions are
problematic, since they are encumbered by occlusions, light
influence [2] and reflection effect. In contrast, the proximity
sensors attached on the robot’s surface enable the exploration
and modeling of the close environment [3].

The presented work is a continuation of our previous
work [4], where a modular capacitive tactile proximity sensor
was proposed for the applications in robotics. In this work,
we attached these sensor modules in the sidewalls of a
worktable and introduce methods from computer vision to
process the signal. We also implemented a multiple object
tracking method based on Kalman Filter in order to gain
more information from the time series.

II. RELATED WORK

As stated in the introduction section, the proximity sensors
have the ability to complement the robot’s perception in its
near field, which could ensure a safe interaction between
human and robot. In [5], proximity sensors are used to
gain information about the object’s position and primitive
shapes, and based on these useful information, the robot can
efficiently execute the grasping task. A network consisting
of proximity sensors is able to locate the objects placed
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on the network, as described in the work [6]. In [2], the
concepts for object tracking based on tactile proximity sensor
are presented. In [7] and Bosch APAS[8], a proximity skin
sensor attached to the surface of the robot enables the
detection of the object’s position and its approximate shape.
The work [9] proved that the proximity sensors could offer
the information about the material of the approaching object.

This paper is structured as following: firstly, we give
a brief introduction about the sensor array used in this
work, we define two different working states of the tracked
objects ”human”. Later on, we represent how computer
vision methods are used to detect the objects and explain the
implementation of Kalman-Filter for tracking. The evaluation
results are then shown for two humans with occlusion case.

III. SYSTEM DESCRIPTION

In this section we present the basic characteristic of
the sensor and then the concrete algorithm implementation,
including preprocessing and tracking methods.

A. Sensor Array

The structure and working principle for proximity sensor
module shown in Fig. 1 was presented in [4]. Each module
can address 8 electrodes. The size of the electrodes can
vary depending on the application; the bigger the size is,
the higher the measurement range will be. In this work,
we equipped each wall of the worktable with a stripe of 8
electrodes, each has the size of 10× 10 cm2 a measurement
range of 15 cm. Those are driven by 3 sensor modules via
a coaxial cable, as shown in Fig. 2.

B. Working States of Human

Unlike the works [7] and [8], where the proximity skin
sensor is attached to the robot’s surface, we install the sensors
alongside the sidewall of the worktable, as shown in Fig. 2.

Fig. 1: CTPS module. Top and bottom side



Fig. 2: Capacitive proximity sensors installed in the table
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Fig. 3: Working states of the human

In this way, we no longer focus on the direct interaction
between human and robot, instead, the working states of
human are more interesting. Based on this, the robot could
adapt dynamically to achieve a safe HRI. Also, the model
developed in this work will not highly depend on specific
robot, supporting the transparency and generalization.

Considering the highly-structured working situation in
a factory, we could roughly divide the working states of
human into two classes, static and dynamic. The static class
describes usually the standing pose of the operators, when
they interact with the robot, as Human A in Fig. 3. In
contrast, the dynamic class describes the walking pose, where
the operators are passing by the worktable, as Human B.

Accordingly, these two classes have different character-
istics as shown in Tab. I, which support higher tracking
robustness.

C. Object Detection

As the data of the sensor array could be taken as a one-
dimension planar image, we could introduce methods from
computer vision to detect moving objects in the proximity

TABLE I: Characteristics of working states

Static Dynamic
Projected Area Big Small

Velocity Low High
Illustration in Pic. 3 Human A Human B

of the worktable. In the following section, we explain the
methods used for the tracking.
Background subtraction. The background used here is the
zero mean values of first hundred frames after sensor initial-
ization. And the subtraction can be expressed as follows:

BSt(x) =

{
0 if (It(x)−B(x)) < τBS

1 if (It(x)−B(x)) ≥ τBS
(1)

Where It(x) is the input sensor values at step t, BS(x) is the
the background signals and τBS is the threshold value. After
this process, we assign the areas, where an object exists, to
1, and the other areas to 0. In this way, the sensor values are
changed into a binary vector.
Segmentation. In this process, the Connected Component
Labeling algorithm is applied. Taking the binary vector as
an input, the output would be a symbolic vector, where
the labels are assigned, identifying the unique connected
component. Also, with a prior knowledge about the human
body, e.g. the minimum projection area should bigger than
15cm, even in dynamic states, we can make a verification to
filter out the noise, which is as follows:{

Human if Ci > τc
Noise Otherwise

(2)

Where Ci is the component area of ith detected operator,
and τc is the threshold value.

D. Tracking

Compared with the vision sensors which could offer us
sufficient information, the spatial resolution of the proximity
sensors is quite low and it’s quite difficult to distinguish
different objects when the sensor array only use a single
snapshot. In order to make the sensor array able to find the
right correspondence when multiple objects appear, as well
as to smooth the noise positions and the trajectories, it is
essential to gain more information from time series [2]. In
this work, we use the Kalman-Filter.
System model. In this work, the same number of trackers
as the detected objects are deployed in order to estimate the
objects state. Each Kalman Filter tracker is configured as
follows:

xk =Axk−1 + ωk

zk =Hxk + vk
(3)

where the ωk and vk are the Gaussian noise with corre-
sponding error covariances Qk and Rk.
The objects states are described with location x, length l



of the bounding box that presents the detected object and
velocity vx. The state vector could be written as:

x =
[
x l vx

]T
(4)

And the state transition matrix A and measurement matrix
H could be represented as:

A =

1 0 T
0 1 0
0 0 1

 , H =

[
1 0 0
0 1 0

]
(5)

where, T is the time interval between two adjacent sampling
frame.
Data association. In the multiple object tracking scenario,
we obtain several measurements through detection. In order
to assign the correct measurement to the corresponding
object tracker, we use the method Intersection over Union
(IoU) that describes the similarity of the sample sets.

In this work, we define a cost of assignment as described
in equ. (6). The smaller the cost is, the higher probability of
the assignment being true.

Cost =

{
1− IoU if IoU > τ
1 + punishCost others

(6)

where τ is the similarity threshold, and the IoU could be
calculated with (7),

IoU =
area(A

⋂
B)

area(A
⋃
B)

(7)

where A represents the detected object area and B represents
the predicted object area.

In this way, we get an M ∗ N cost matrix, where M
represents the trackers’ number, and N for measurement. At
that point, the assignment problem turns into a cost mini-
mization problem, which could be solved with the Hungarian
algorithm.

IV. EXPERIMENTAL VALIDATION

In this part, we tested our proposed framework with the
worktable, shown in Fig. 2. For the test scenario, we consider
the different working states of human, which means one
person is standing alongside the worktable while the other
is walking by, as shown in Fig. 4a.The tracking result of
this framework can be seen in Fig. 4b, where the heliotrope
rectangle represents the standing person and the blue one
represents the person passing-by.

The framework could distinguish different objects even if
a occlusion occurs. One person was standing about 10 cm
away from the worktable and the other was working around
the worktable with about 1.5 m/s and about 15 cm away.
The width of the tracks shown in 4 corresponding to the
activated electrodes and thus to distance and the pose of the
person.

(a) Before occlusion. (b) After occlusion.

Fig. 4: Test scenario in real world and tracking result in
MATLAB

V. CONCLUSIONS

In this work we presented a framework for multiple object
tracking using capacitive proximity sensor array, which is
able to perceive their near environment. It shows the benefits
of using locally installed sensor to cover large areas of a
collaborative-workspace. We see the capacitive proximity
sensors as an complementary system for cameras, especially
in the case on occlusions.

This is a proof of concept work showing the capability
of capacitive proximity sensors for tracking tasks. The fu-
ture work will extend the use case to include multi-human
interacting with the worktable and collaborating with the
robot. We will show how the capacitive proximity sensor
in combination with other sensors could contribute to a safe
Human-Robot-Interaction.
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